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We employed an endpoint genotyping method to update the prevalence rate of positivity for the TR34/L98H mutation (a 34-bp
tandem repeat mutation in the promoter region of the cyp51A gene in combination with a substitution at codon L98) and the
TR46/Y121F/T289A mutation (a 46-bp tandem repeat mutation in the promoter region of the cyp51A gene in combination with
substitutions at codons Y121 and T289) among clinical Aspergillus fumigatus isolates obtained from different regions of Iran
over a recent 5-year period (2010 to 2014). The antifungal activities of itraconazole, voriconazole, and posaconazole against 172
clinical A. fumigatus isolates were investigated using the European Committee on Antimicrobial Susceptibility Testing
(EUCAST) broth microdilution method. For the isolates with an azole resistance phenotype, the cyp51A gene and its promoter
were amplified and sequenced. In addition, using a LightCycler 480 real-time PCR system, a novel endpoint genotyping analysis
method targeting single-nucleotide polymorphisms was evaluated to detect the L98H and Y121F mutations in the cyp51A gene of
all isolates. Of the 172 A. fumigatus isolates tested, the MIC values of itraconazole (>16 mg/liter) and voriconazole (>4 mg/liter)
were high for 6 (3.5%). Quantitative analysis of single-nucleotide polymorphisms showed the TR34/L98H mutation in the cyp51A
genes of six isolates. No isolates harboring the TR46/Y121F/T289A mutation were detected. DNA sequencing of the cyp51A gene
confirmed the results of the novel endpoint genotyping method. By microsatellite typing, all of the azole-resistant isolates had
genotypes different from those previously recovered from Iran and from the Dutch TR34/L98H controls. In conclusion, there was
not a significant increase in the prevalence of azole-resistant A. fumigatus isolates harboring the TR34/L98H resistance mecha-
nism among isolates recovered over a recent 5-year period (2010 to 2014) in Iran. A quantitative assay detecting a single-nucleo-
tide polymorphism in the cyp51A gene of A. fumigatus is a reliable tool for the rapid screening and monitoring of TR34/L98H-
and TR46/Y121F/T289A-positive isolates and can easily be incorporated into clinical mycology algorithms.

Azole resistance in Aspergillus fumigatus is a global and evolving
public health threat which translates into treatment failure

(1). Surveillance studies indicate that the incidence of azole resis-
tance is increasing (2–6), with the TR34/L98H mutation (a 34-bp
tandem repeat mutation in the promoter region of the cyp51A
gene in combination with a substitution at codon L98) emerging
in multiple European countries and in the Middle East, Asia, and
Africa and with a new resistance mechanism, the TR46/Y121F/
T289A mutation (a 46-bp tandem repeat mutation in the pro-
moter region of the cyp51A gene in combination with substitu-
tions at codons Y121 and T289), emerging more recently in
Europe and India (2–6). We also previously reported the occur-
rence of the TR34/L98H mutation in 3.2% of clinical Aspergillus
fumigatus isolates obtained from patients in Iran to the end of
2009 (5).

The trend of increases in the rates of azole resistance among A.
fumigatus isolates in different regions and patient groups exem-
plifies the fact that knowledge of the (local) epidemiology of azole-
resistant Aspergillus diseases is important for clinical mycology/
microbiology reference laboratories (7–9). Moreover, rapid and
specific molecular methods for the identification of the recently
identified azole-resistant A. fumigatus strains can significantly in-
fluence a timely decision on patient management (10).

In our search for a novel, rapid, sensitive, accurate, and high-
throughput method for detection and screening of azole resis-
tance in A. fumigatus, we found that endpoint genotyping target-
ing a single-nucleotide polymorphism (SNP) in the cyp51A gene
could provide an option. The quantitative analysis of SNPs has
been a reliable method in diagnostic microbiology for identifica-
tion of a single nucleotide in the genomes of humans (11–15),
viruses (16–20), and bacteria (18). In this assay, an extension
probe can be simply designed to anneal to the template in a posi-
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tion that places the mutation site immediately adjacent to the 3=
end of the probe, and the use of dideoxynucleoside triphosphates
(ddNTPs) allows the extension of only 1 nucleotide from the 3=
end of the probe. Labeling of each ddNTP with a different fluores-
cent dye allows the differentiation of the genotype at the SNP by
the color of the extended probes (11–20).

In the current study, we therefore evaluated the prevalence of
TR34/L98H- and TR46/Y121F/T289A-positive isolates among
clinical Aspergillus fumigatus isolates obtained from patients with
Aspergillus diseases in Iran over a recent 5-year period (2010 to
2014), using PCR sequencing and the novel endpoint genotyping
assay targeting SNPs in the cyp51A gene of A. fumigatus.

MATERIALS AND METHODS
Fungal isolates. One hundred seventy-two clinical A. fumigatus isolates
obtained from 142 patients with Aspergillus diseases were investigated.
These patients included 88 patients with chronic pulmonary aspergillosis
(CPA; 61.97%), 23 patients with allergic bronchopulmonary aspergillosis
(ABPA; 16.19%), 20 patients with aspergilloma (14.08%), and 11 patients
with invasive pulmonary aspergillosis (7.75%). Patient-related data were
collected in accordance with the applicable rules concerning the review of
research ethics committees at the Tehran University of Medical Sciences,
and informed consent was obtained from all patients. The isolates were
stored in 10% glycerol broth at �80°C at the Tehran University Mycology
Reference Centre in Iran (Tables 1 and 2).

The isolates were submitted to various fungus culture collections
across Iran over the last 5 years (2010 to 2014) for species identification
and antifungal susceptibility testing and were then submitted to the My-
cology Reference Centre at the School of Hygiene & Institute of Public
Health Research, Tehran University of Medical Sciences, Tehran, Iran.
The isolates were subcultured on Sabouraud dextrose agar (SDA) supple-
mented with 0.02% chloramphenicol for 5 days at 35 to 37°C. The isolates

were originally identified by experienced technicians on the basis of mac-
roscopic colony morphology, the microscopic morphology of the conidia
and conidium-forming structures, and the ability to grow at 48°C, and
their identities were further confirmed by sequence-based analysis of parts
of the �-tubulin and calmodulin genes, as described previously (21, 22).
All isolates were plated onto a four-well agar plate containing one well
each with 4 mg/liter of itraconazole, 1 mg/liter of voriconazole, and 0.5
mg/liter of posaconazole and a growth control well (23). The ability to
grow on each well was assessed after 48 h. Any isolate that was able to grow
on one of the azole-containing media was further investigated by antifun-
gal susceptibility testing, PCR sequencing of the cyp51A gene, and the
novel SNP endpoint genotyping technique.

In addition, a collection of wild-type and azole-resistant A. fumigatus
strains (10 wild-type strains, 8 strains positive for the TR34/L98H muta-
tion, and 6 strains positive for the TR46/Y121F/T289A mutation) were
obtained from the culture collection of Radboud University Medical Cen-
tre, Nijmegen, the Netherlands. The genomic DNAs of these isolates were
used as negative and positive controls for amplification and detection of
the L98H and Y121F mutations by the novel quantitative PCR assays that
we developed.

In vitro antifungal susceptibility testing. In vitro antifungal suscep-
tibility testing was performed using a broth microdilution method ac-
cording to European Committee on Antimicrobial Susceptibility Testing
(EUCAST) guidelines (24). Itraconazole, voriconazole, posaconazole,
and amphotericin B were assayed over a 2-fold concentration range of
from 16 to 0.016 mg/liter. Visual readings were performed with a reading
mirror, and the MIC was defined as the lowest antifungal concentration
that inhibited growth by 100% after 48 h compared with the growth of the
drug-free well. Susceptibility tests were performed three times with each
strain on different days. Paecilomyces variotii (ATCC 22319), Candida
parapsilosis (ATCC 22019), and Candida krusei (ATCC 6258) were used
for quality control in all experiments. The EUCAST breakpoints and ep-
idemiological cutoff (ECOFF) values were used for the interpretation of
the in vitro drug susceptibility testing results (25).

DNA extraction. DNA was isolated as described previously (26); in
brief, the isolates were cultured on Sabouraud dextrose agar slants.
Conidia were harvested and added to 200 �l of breaking buffer (100 mM
NaCl, 10 mM Tris-HCl, pH 8, 2% Triton X-100, 1% sodium dodecyl
sulfate, 1 mM EDTA, pH 8) with �0.1-g glass beads (diameters, 0.4 to 0.6
mm). After shaking by vortexing, the conidia were incubated at 70°C for
30 min while they were shaken. Then, 200 �l of phenol-chloroform-iso-
amyl alcohol (25:24:1) saturated with pH 8.0 aqueous buffer was added,
and the samples were incubated for 5 min while they were shaken. After
centrifugation for 5 min, the upper phase containing the DNA was trans-
ferred to a new tube. One microliter of DNA was used per PCR mixture.

Strain identification and cyp51A sequence analysis. All isolates were
identified using sequence-based analysis of the calmodulin and �-
tubulin genes, as described previously (21, 22). The sequence of the
promoter region and the full coding sequence of the cyp51A gene were
determined by amplification and subsequent sequencing as described

TABLE 1 Distribution of azole-resistant and azole-susceptible (wild-
type) A. fumigatus isolates examined in this study according to year of
isolation

Yr of
isolation

No. of isolates with each phenotype and resistance mechanism

Wild
type

Resistant TR34/L98H
mutant

Resistant TR46/Y121F/T289A
mutant

2010 24 1
2011 35 1
2012 37 1
2013 38 2
2014 32 1

Total 166 6 0

TABLE 2 Underlying disease and in vitro susceptibilities of six clinical Aspergillus fumigatus isolates that grew on the 4-well platesa

Azole-resistant Aspergillus
fumigatus isolate

Underlying
diseaseb

MIC (mg/liter)

Amphothericin B Itraconazole Voriconazole Posaconazole

T-IR-AF 1002 CPA 0.5 �16 4.0 0.25
T-IR-AF 1088 CPA 0.5 �16 2.0 0.5
T-IR-AF 1143 CPA 0.5 �16 8.0 0.5
T-IR-AF 1416 CPA 0.5 �16 8.0 0.5
T-IR-AF 1499 ABPA 0.5 �16 4.0 0.5
T-IR-AF 1521 CPA 0.5 �16 8.0 0.5
a All isolates were positive for the 34-bp tandem repeat in the promoter region of the cyp51A gene and the L98H amino acid substitution (nucleotides are numbered from the
translation start codon ATG of cyp51A) in the cyp51A gene, and all patients had previously been exposed to azoles.
b CPA, chronic pulmonary aspergillosis; ABPA, allergic bronchopulmonary aspergillosis.
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previously (26–28). To detect mutations, the sequences were compared
with the cyp51A gene sequence with GenBank accession number
AF338659 (29).

Endpoint genotyping. Using a LightCycler 480 real-time PCR system,
a novel endpoint genotyping analysis method was evaluated to detect the
L98H and Y121F mutations in all of the 172 clinical A. fumigatus isolates,
as described previously (J. Zoll, S. Seyedmousavi, W. J. Melchers, and P. E.
Verweij, submitted for publication). The assay is based on the competi-
tion during annealing between probes detecting the wild type and the
mutants. The use of locked nucleic acid (LNA) residues at the SNP and
adjacent positions increases the discriminative properties of the probes. A
fragment of the A. fumigatus cyp51A gene covering both the L98 and Y121
codons was amplified in the presence of TaqMan probes detecting L98,
L98H, Y121, and Y121F. The primer and probe sequences used in the
current study are shown in Table 3.

The real-time PCR was performed using a Roche LC480 instrument II.
The PCR mixture formulation was 350 nM either forward or reverse
primer, 250 nM the TaqMan probe, and 1 �l sample DNA in the Roche
LC480 probe master mix according the manufacturer’s protocol. Thermal
cycling was performed with an initial decontamination program for 10
min at 40°C, followed by hot-start activation and initial DNA denatur-
ation for 10 min at 94°C. Template DNA was amplified in a two-step
cycling program of 45 cycles consisting of denaturation for 10 s at 94°C
and annealing and extension for 1 min at 60°C. A series of control samples
was analyzed in parallel. Control samples consisted of DNA extracted
from A. fumigatus with wild-type, TR34-L98H, and TR46-Y121F/T289A
cyp51A. The cyp51A genotype was determined on the basis of the fluores-
cence ratios of the discriminative probes.

Microsatellite genotyping. Genotyping was performed on all A. fu-
migatus isolates for which the MIC of itraconazole was �16 mg/liter,
using an A. fumigatus short tandem repeat (STR) assay, as described pre-
viously (29–31). Briefly, six loci consisting of three trinucleotide repeat
fragments (A. fumigatus STRs 3A, 3B, and 3C) and three tetranucleotide
repeat fragments (A. fumigatus STRs 4A, 4B, and 4C) were amplified by
using fluorescently labeled primers (29–31). The sizes of the fragments
were determined by addition of the GeneScan LIZ500 marker and subse-
quent analysis of the fragments on an Applied Biosystems 3730 DNA
analyzer. Assignment of repeat numbers in each marker was determined
from the GeneScan data by using Peak Scanner (version 1.0) software
(Applied Biosystems). The sizes of the fragments were determined on the
basis of the size of the LIZ500 marker, and the repeat numbers of these
isolates were compared to those of a collection of 20 Dutch TR34/L98H-
positive isolates. Allele-sharing distance matrices were generated from the
tandem repeat numbers and were used as input into the Neighbor pro-
gram of the PHYLIP (version 3.6) software package to produce dendro-
grams (32–34).

RESULTS
Prevalence of azole-resistant A. fumigatus isolates in Iran from
2010 to 2014. The global distribution of azole-resistant and azole-
susceptible (wild-type) A. fumigatus isolates examined in this
study is shown in Table 1 according to the year of isolation. All

isolates were identified to be A. fumigatus by sequence analysis of
the ITS1, ITS2, and �-tubulin genes. Of the 172 A. fumigatus iso-
lates, 6 isolates (recovered from separate patients) grew on the
wells containing itraconazole and voriconazole, indicating a prev-
alence of 3.5%.

Antifungal resistance phenotypic analysis. Table 2 shows the
underlying disease of the patients and the in vitro susceptibilities
of six clinical A. fumigatus isolates that grew on the 4-well plates.
All six isolates showed a multiresistant phenotype, and the MICs
of itraconazole (�16 mg/liter) and voriconazole (�2 mg/liter) for
these isolates were high. Five of these isolates were recovered from
patients with chronic pulmonary aspergillosis (CPA), and one was
from a patient with allergic bronchopulmonary aspergillosis
(ABPA).

Resistance mechanism. As shown in Fig. 1, quantitative anal-
ysis of the single-nucleotide polymorphisms showed the presence
of the TR34/L98H mutation in the cyp51A gene of the 6 out of the
172 A. fumigatus isolates for which the MICs of itraconazole and
voriconazole were elevated. However, no A. fumigatus isolates
harboring the TR46/Y121F/T289A mutation were detected. Se-
quence analysis of the cyp51A gene confirmed the presence of the
TR34/L98H mutation in those 6 isolates, yet no other polymor-
phisms were identified in any of the 172 isolates tested.

Genotypic analysis. Microsatellite typing of six STR loci
showed identical patterns for two out of the six azole-resistant
isolates, proving that the two isolates had a similar phylogenetic
origin and, possibly, the same origin. Of note, the two patients
from whom these isolates were recovered lived in the same geo-
graphical area. Comparison of genetic relatedness by the genera-
tion of dendrograms of the STR profiles showed that the 6 Iranian
clinical isolates clustered apart from the 20 Dutch TR34/L98H
control isolates and those previously isolated in Iran between 2003
and 2009 (5).

DISCUSSION

In the present study, we found a 3.5% prevalence of resistance to
triazoles resulting from the TR34/L98H mutation in A. fumigatus
isolates obtained from patients with underlying Aspergillus disease
in Iran over a recent 5-year period (2010 to 2014). There was not
a significant increase in the prevalence of azole-resistant A. fu-
migatus harboring the TR34/L98H mutation. Of note, five out of
six azole-resistant isolates were recovered from CPA patients. The
significant predilection to CPA is in agreement with the findings
of recent studies in Iran which demonstrated that CPA is the most
common clinical presentation of aspergillosis in individuals with
healed tuberculosis (35). Importantly, patients with CPA require
long-term maintenance antifungal therapy to improve symptoms
and prevent the recurrence of infection (36, 37).

TABLE 3 Sequences of primers and probes used for detection of L98H and Y121F mutations in cyp51A gene of Aspergillus fumigatus

Assay Primer or probe Sequence (5=–3=)a

cyp51A amplification Forward primer GGCGTTCAGGGGAACGAG
cyp51A amplification Reverse primer CTTGATGAACTTTTTCTGCTCCATCAG
cyp51A L98 detection L98 probe 6FAM-AACGGCAAG�C�T�CAAGGATGTC-BBQ
cyp51A L98H detection L98H probe Cy5-CAACGGCAAG�C�A�CAAGGATGTCA-BBQ
cyp51A Y121 detection Y121 probe LC610-TTGGGACAATC�A�T�ACACCACGTCCG-BBQ
cyp51A Y121F detection Y121F probe 6HEX-TTGGGACAATC�A�A�ACACCACGTCCG-BBQ
a The following dyes were used as 5=fluorophores: 6-carboxyfluorescein (6FAM), LightCycler Red 610 dye (LC610), cyanine 5 (Cy5), and 3=-quencher BlackBerry quencher (BBQ).
�X (where X indicates any nucleotide), an LNA residue.
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The acquisition of azole resistance in A. fumigatus is an emerg-
ing public health problem which definitely needs continued sur-
veillance at the national and international levels (9). The main
molecular mechanism of azole resistance in A. fumigatus is ex-
plained by several mutations in the cyp51A gene (38). Two com-
mon genetic variants associated with resistance to azoles are the
TR34/L98H mutation and the TR46/Y121F/T289A mutation (1, 2).
Both mutations are predominantly found in the environment,
show a strong tendency to migrate, and have now been reported in
many countries from several continents (3, 23, 40–42). In addi-
tion, the clinical implications of infection due to A. fumigatus
isolates harboring these mutations are significant, as they cause
both diagnostic challenges and azole treatment failure (8, 43).

Since effective monitoring of azole resistance requires effective
detection methods, rapid diagnostic tools are warranted to obtain
a better understanding of the scale of this emerging problem and
to detect the emergence of new resistance mechanisms early (7, 8).
In the current study, we employed for the first time a rapid and
simple one-step endpoint genotyping quantitative PCR assay (11–
20) to detect the L98H and Y121F mutations in TR34/L98H- and
TR46/Y121F/T289A-positive azole-resistant A. fumigatus isolates.
Interestingly, all of the A. fumigatus isolates in which the L98H
mutation was confirmed by PCR sequencing of the cyp51A gene
were correctly found to be mutated from the endpoint fluores-
cence plots (Fig. 1). The quantitative SNP assay used in the current
study is based on the competition between probes detecting the
wild type and the mutants (11, 16–18, 44). Endpoint measure-
ments of the fluorescent signal for the mutant probe versus that
for the wild-type probe were used for target detection and SNP
discrimination (16–20). Importantly, this is a rapid method that is

technically simple to perform and can easily be employed in clin-
ical diagnostic laboratories.

Of note, molecular techniques are a promising tool to rapidly
provide information about the azole resistance genotype of A.
fumigatus isolates. Mellado et al. used PCR amplification of the
cyp51A region followed by DNA sequencing (45); PCR assays were
performed using primers generated from the unique sequence of
the A. fumigatus cyp51A gene, and the A. fumigatus cyp51A gene
was further evaluated by consecutive DNA sequence analysis to
detect and identify point or tandem repeat mutations (45). Using
real-time quantitative PCR, Klaassen et al. applied a mixed-format
assay and analyzed the melting curves obtained with specific probe
primers to detect clinically related mutations at positions Gly54,
Leu98, Gly138, and Met220 of the cyp51A gene of A. fumigatus
(38). The L98H and TR34 mutations have also been detected using
specific PCR assays targeting each mutation (46), a nested PCR
assay followed by DNA sequencing (47), and a PCR-restriction
fragment length polymorphism (RFLP) assay (39). In addition,
PCR-based assays were also tested to detect cyp51A gene muta-
tions directly in clinical samples (48, 49). Moreover, two commer-
cial multiplex real-time PCR assays which are able to differentiate
susceptible from resistant A. fumigatus strains and identify various
mutations of the cyp51A gene directly in serum and bronchoal-
veolar lavage fluid samples were recently introduced (50, 51).

In conclusion, our data show that there was not a significant
increase in the prevalence of azole-resistant A. fumigatus isolates
harboring the TR34/L98H resistance mechanism over a recent
5-year period in Iran. The quantitative assay detecting a single-
nucleotide polymorphism in the cyp51A gene of A. fumigatus is a
powerful surveillance method with high epidemiological and clin-

FIG 1 Endpoint fluorescence plot of single-nucleotide variance for detection of the L98H mutation in clinical Aspergillus fumigatus isolates using a quantitative
PCR assay. Relative L98 (6-carboxyfluorescein [6FAM]) and L98H (cyanine 5 [Cy5]) fluorescence levels are plotted on the y and x axes, respectively. Blue
diamonds, control isolates; purple circles, clinical A. fumigatus isolates without a mutation in the cyp51A gene at L98; black circles, clinical A. fumigatus isolates
harboring the L98H substitution in the cyp51A gene; X, nuclease-free water, which was used as a negative control.
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ical relevance to determine whether A. fumigatus isolates have
acquired the TR34/L98H and or TR46/Y121F/T289A mutations
and can easily be incorporated into clinical mycology algorithms.
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